Version 1.0

Ceiling Mounted
Occupancy Sensors

New
Greengate Ceiling Mounted Occupancy Sensors
The new Greengate occupancy sensors are the best performing, broadest featured, most aesthetically pleasing ceiling mounted occupancy sensors available.

Greengate ceiling mounted occupancy sensors are ideal for private offices, classrooms, conference rooms, open office areas, hallways and restrooms; where increased energy efficiency is desired; or to meet local, state, and federal codes.

These sensors utilize passive infrared, ultrasonic, and dual technologies making them ideally suited for a variety of applications.

Greengate ceiling mounted occupancy sensors include features such as Automatic and Manual-On Modes, optional built-in daylight sensors and BAS relay, manual adjustments, Zero Time Delay Mode, discrete time delays, Walk-Through Mode, and more.

» Industry’s best major motion coverage area and leading overall motion sensing performance

» Broadest number of features available makes application and specification easier

» Matching aesthetic to award-winning NeoSwitch and Wall/Cornor Occupancy Sensor Devices

Table of Contents

Greengate Ceiling Mounted Occupancy Sensors Introduction ... 2
Best Performance - Passive Infrared Major Motion Coverage .. 3-4
Leading Performance - Ultrasonic Minor Motion Coverage .. 5
Patented and Patent Pending Technologies ... 6
Broadest Features ... 7
Best Aesthetics .. 8
Sensing Technologies ... 9
Application Guide ... 10
NEMA WD 7-2011 ... 11-12
Code Compliance and Energy Savings .. 13
Reference Guide ... 14
Product Offering .. 15
Ordering Information ... 16
Additional Services and Support .. 17
Greengate Ceiling Sensors Provide the Best Major Motion Coverage Area and Initial Activation Performance in the Industry

- Lights turn ON sooner when walking into a room using Greengate Ceiling Sensors.
- Major Motion coverage area exceeds the competition by 5 to 42% when tested.

Cooper Controls OAC-DT-2000-R
- Largest Major Motion coverage area of 1980 sq. ft.
- Initial activation area extends well into the corner of a room where a door or entry is typically located

Hubbell OMNIDT2000RP
- 1548 sq. ft. of coverage
- Coverage pattern inconsistent at the corners requiring field adjustment

Sample Test Results
- Greengate sensors have greater coverage area ensuring lights turn ON first.
- Uniform distribution prevents oddities in performance or coverage gaps.

Major Motion

Major motion is defined as movement of a person walking into or through an area.

Typical examples are a person walking into a room or down a corridor.

Major motion may be required to turn ON the lights, but transitions to minor motion once the occupant is in the room.
Competitor Lens Comparison

- Sensors with Passive Infrared Technology have segmented lenses. For units to see motion, the person must cross between two segments/bands.
- The more segments and greater surface area of the lens allows the sensor to see further than any other sensor on the market today.
- Cooper Controls lens is up to 39% larger.

<table>
<thead>
<tr>
<th>Cooper Controls</th>
<th>Leviton</th>
<th>SensorSwitch</th>
<th>Hubbell</th>
<th>WattStopper</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.25" Diameter Lens</td>
<td>1.44" Diameter Lens</td>
<td>1.38" Diameter Lens</td>
<td>1.38" Diameter Lens</td>
<td>1.5" Diameter Lens</td>
</tr>
<tr>
<td>PIR Major Motion: 1980 sq. ft.</td>
<td>PIR Major Motion: 1872 sq. ft.</td>
<td>PIR Major Motion: 1556 sq. ft.</td>
<td>PIR Major Motion: 1548 sq. ft.</td>
<td>PIR Major Motion: 1386 sq. ft.</td>
</tr>
</tbody>
</table>

Close up of lens showing segments

Passive Infrared Major Motion Coverage Area Comparison

Products tested in identical manner, compliant to NEMA WD 7 - 2011 Occupancy Motion Sensors Standard (see page 11). (Results may change based on your application)

![Bar Chart](chart.png)

WattStopper does not offer a Dual Technology 2000 sq. ft. coverage sensor. Their 1000 sq. ft. sensor was used for reference.
Leading Minor Motion Ultrasonic Sensing Performance

Cooper Controls Ultrasonic and Dual Technology sensors utilize the latest in circuit design combined with innovative firmware that has continued to evolve over the last 30+ years delivering best-in-class minor motion coverage.

Cooper Controls OAC-DT-1000-R

Legend
- Tested & Motion Detected
- Tested & Motion Not Detected
- Not Tested

Sample Test Results
> Cooper sensor has superior minor motion detection capability
> Sensor coverage ensures lights stay ON while occupants show only minor motion such as arm movements, typing, writing, etc.

- Largest minor motion coverage area of 486 sq. ft.
- Lights stay ON when minimal amount of human motion is present

Minor Motion

Minor motion is defined as movement of a person sitting at a desk reaching for a telephone, turning the pages of a book, opening a file folder, or picking up a cup of coffee.

It is important to pick up these type of motions to avoid occupant disturbance.

Ultrasonic Minor Motion Coverage Area Comparison

Products tested in identical manner, compliant to NEMA WD 7 - 2011 Occupancy Motion Sensors Standard (see page 11).
(Results may change based on your application)
Variable Drive Circuitry (VDC)

Ensures adequate detection for the space.

- In cases of over saturation from misapplication, standard adaptive sensors reduce detection capability without reducing volumetric output to compensate.
- Cooper Controls sensors adjust down volumetric output in a linear relationship with the detection to ensure optimal performance.

![Typical case of over saturation](image1)

![Properly adjusted with VDC](image2)

MicroSet Technology

Prevents detuning which can lead to inadvertent lights out.

- Sensor will automatically and continually self-adjust to the optimal setting.
- Sensor will ignore specific frequency (like continuous noise from airflow) rather than detuning as with standard adaptive sensors.

![MicroSet - adjust frequency without detuning](image3)

![Typical Adaptive Ultrasonic Sensors detune](image4)

Dual Pre Amp w/Independent AGC

Ensures optimum performance regardless of location or proximity to walls, structures, etc.

- Cooper Controls runs two independent sensor detection circuits simultaneously.
- Sensor can automatically adjust each circuit independently to ensure optimum performance regardless of location or proximity to wall, structures, etc.
Broadest Feature Set

Industry First - Installation & Performance Features

Tracking/HVAC Mode
When enabled, allows the device connected to the Form C BAS relay to remain ON when the lights are turned OFF manually unlike other sensors on the market today. (Low Voltage Units Only)

Relay Swap Option
A common problem in electric wiring is wiring the wrong wire to the wrong load. This can make control of loads confusing to an end user. The Relay Swap option (-DMV Units Only) solves the problem by swapping the relays after the unit is wired and installed.

Bathroom Mode
When selected, Bathroom Mode (-DMV Units Only) keeps the second relay ON for an additional 10 minutes, after the first relay has turned OFF. This is ideal for areas that require mechanical fans.

Zero Time Delay Mode
In Zero Time Delay Mode (Low Voltage Units Only), the output control signal is actuated for one second to signal another device that the space being monitored is occupied. Applications may include the use of a lighting control system to manage the time delay vs. adjusting time delay at sensor.

Maximum Energy Savings Benefits

Daylighting Capabilities
When enabled, the daylighting feature (-R/MV/DMV Units Only) prevents lights from turning ON when the room is adequately illuminated by natural light.

- Full Logic Mode (-R Units Only) - should the ambient light level exceed the preset foot-candle level, the lights turn OFF. The lights will remain OFF, until the ambient light level falls below the set point.
- Half Logic Mode – If the amount of natural light available rises above the setpoint, the daylight sensor will not turn the lights OFF while occupancy is being detected.

Walk-Through Mode
Walk-Through feature maximizes energy savings by not leaving the lights ON after a momentary occupancy.

BAS Relay (Form C Relay)
A popular application is to use the occupancy sensor to send an OFF command to a local VAV to turn OFF the air conditioning in a space. Available in -R Units.

Manual/Automatic ON Mode
In Automatic ON Mode, the lights turn ON when a person enters the room. In Manual ON Mode (-R Units Only), the lights are turned ON by activating a momentary switch (model # GMDS-*) that is connected to the sensor.

Application Options

120 to 347 VAC, 50/60Hz (cULus Listed)
Line voltage ceiling sensors are available as one universal voltage model for global applications

Self-Adjusting or Manual Adjustment Options
Time, Delay, Sensitivity and Daylight can be adjusted to meet the needs of the desired application.

Discrete Time Delay Settings
Time Delays are set using DIP Switches allowing exact, separate, and distinct timing.
Best Aesthetics

Award Winning Aesthetic Uniformity Across Multiple Sensor Types

Color Matched, Smooth Domed Lens Reduces Contrast Ensuring Sensor Blends with its Environment

Lower contrast ratio between lens, sensor, and ceiling due to color match lens and matching electronics.

Higher contrast ratio between lens, sensor, and ceiling due to different color lens and dark, visible electronics.

Surveyed Users Chose Greengate Ceiling Sensors as the Most Aesthetically Pleasing Ceiling Mounted Occupancy Sensor Compared to Other Leading Manufacturers
Passive Infrared Relay (PIR) Technology

- Designed to detect motion from a heat-emitting source (such as a person entering a room) within its field-of-view and automatically switch lights ON and OFF.
- PIR sensors are considered line-of-sight sensors, meaning that the sensor must be able to have a direct line-of-sight to the person making the motion.

Ultrasonic (US) Technology

- Ultrasonic sensors use the Doppler principle.
- These sensors produce low intensity, inaudible sound and detect changes in sound waves caused by motion, such as walking into the room, reaching for a telephone, or turning in a chair.
- They are volumetric in nature and therefore not line-of-sight dependant.
- Since they fill the space with these sound waves, they are excellent in bathrooms with stalls or other oddly shaped rooms. In addition, they are much more sensitive to smaller motions.

Dual Technology

- Dual Technology is the combination of PIR and Ultrasonic into one sensor and is the ultimate sensing solution available today.
- This pairing helps to eliminate false activations (both ON and OFF) thus saving additional energy use.
- Dual Technology sensors ensure the greatest sensitivity and coverage for tough applications without the threat of false triggers.
Applications for Ceiling Mounted Occupancy Sensors

Private Office
Size: 150 sq. ft.
LPD: 1.1 watt. sq. ft.
Lighting Hours: 3,500
Electricity Cost: 10.2/kwh

45% Savings = $26.51 Yearly

Hallway
Size: 450 sq. ft.
LPD: 0.5 watt. sq. ft.
Lighting Hours: 4,500
Electricity Cost: 10.2/kwh

35% Savings = $36.15 Yearly

Classroom
Size: 1200 sq. ft.
LPD: 1.4 watt. sq. ft.
Lighting Hours: 2,800
Electricity Cost: 10.2/kwh

40% Savings = $191.93 Yearly

<table>
<thead>
<tr>
<th>GreenGate</th>
<th>Commercial Low Voltage Ceiling Sensors</th>
<th>Commercial Line Voltage Ceiling Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passive Infrared</td>
<td>Ultrasonic</td>
</tr>
<tr>
<td>OAC-P-500</td>
<td>OAC-U-500</td>
<td>OAC-U-1000</td>
</tr>
<tr>
<td>Applications</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Cafeteria</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Cafeteria High Ceiling</td>
<td>Best</td>
<td></td>
</tr>
<tr>
<td>Classroom</td>
<td>Best</td>
<td></td>
</tr>
<tr>
<td>Closet (Utility)</td>
<td>Best</td>
<td></td>
</tr>
<tr>
<td>Computer Room</td>
<td>Better</td>
<td></td>
</tr>
<tr>
<td>Conference Room</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Copy/File/Storage Room</td>
<td>Best</td>
<td></td>
</tr>
<tr>
<td>Hallway</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Office (Executive)</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Office (Private)</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Open Office w/ Cubicles</td>
<td>Best</td>
<td></td>
</tr>
<tr>
<td>Restroom Partitioned</td>
<td>Best</td>
<td></td>
</tr>
<tr>
<td>Vending Room</td>
<td>Best</td>
<td></td>
</tr>
</tbody>
</table>

45% Savings = $26.51 Yearly

35% Savings = $36.15 Yearly

40% Savings = $191.93 Yearly
NEMA WD 7-2011

Occupancy Motion Sensors Standard

1998 - Cooper Controls, under the Novitas brand, invented the robotic method to test and guarantee minor motion coverage.
2000 - NEMA adopted the Novitas robotic test method as the guide for occupancy sensor testing.
2011 - The NEMA Guide was updated and adopted as the NEMA WD 7 – 2011 Occupancy Motion Sensors Standard.

At the time it was approved, some of the members included the following:
- Cooper Industries — Peachtree City, GA
- Hubbell Incorporated — Bridgeport, CT
- Leviton Manufacturing Co., Inc. — Little Neck, NY
- Lutron Electronics Company, Inc. — Coopersburg, PA
- Pass & Seymour/Legrand — Syracuse, NY
- WattStopper, Inc./Legrand — Santa Clara, CA

The standard was created in order to promote uniformity for the definition and measurement of characteristics relevant to the use and application of occupancy motion sensors. Coverage claims that have not been verified using the NEMA WD 7 – 2011 Occupancy Motion Sensors Standard and robotic method are likely to be substantially overstated.

A free electronic copy of the standard may be downloaded at: http://www.nema.org/stds/wd7.cfm#download

NEMA WD 7 Testing - How it Works

The testing criteria of NEMA WD 7 – 2011 Occupancy Motion Sensors Standard outlines specific environmental conditions, equipment, test subject height, weight, and clothing requirements, as well as test procedures for major and minor motion sensing.

Cooper Control’s Test Laboratory conducts extensive testing of motion sensitivity properties relevant to specific application and intended performance. The testing performed is capable of validating products to the NEMA WD 7 – 2011 Occupancy Motion Sensors Standard. Our occupancy sensor technology experts take great pride in their active involvement in creating, utilizing, and driving industry standards.

Upon completion of testing, an illustration of the horizontal or vertical fields of view of the sensor is developed. The illustration typically includes a grid pattern, with a maximum 3' x 3' cell size indicating major and/or minor motion detection. The illustration can be used to compare differing products and their sensitivity to major and/or minor motion.

Sample Room Size Close-up (3' x 3' Cell)

This process, as dictated by the NEMA WD 7 - 2011 Occupancy Motion Sensors Standard testing method, was used to test all Cooper and competitive sensors.

![Sample Room Size Close-up (3' x 3' Cell)](image-url)
NEMA WD 7 Illustrations are Comparable to MPG Data for Automobiles

NEMA WD 7 illustrations are a useful tool for comparing relative motion sensing performance of different occupancy sensors in like testing environments but may not accurately predict the exact coverage that you will see in your application.

Fuel Economy Label

• Helps car buyers choose the most fuel-efficient vehicle that meets their needs
• EPA tests are designed to reflect “typical” driving conditions
• Many factors affect “real world” performance
 » How and where you drive
 » Vehicle condition and maintenance
 » Fuel variations
 » Vehicle variations
 » Engine break-in

EPA Fuel Economy Estimates

CITY MPG

<table>
<thead>
<tr>
<th>Expected range for most drivers</th>
<th>18 to 21 MPG</th>
</tr>
</thead>
</table>

HIGHWAY MPG

<table>
<thead>
<tr>
<th>Estimated Annual Fuel Cost</th>
<th>$2,100 based on 15,000 miles at 2.80 per gallon</th>
</tr>
</thead>
</table>

Combined Fuel Economy
This Vehicle

21

10

All SUVs

Expected range for most drivers
21 to 29 MPG

Your actual mileage will vary depending on how you drive and maintain your vehicle.

www.fueleconomy.gov

These estimates reflect new EPA methods beginning with 2008 models.

Fuel Economy Label

• Helps car buyers choose the most fuel-efficient vehicle that meets their needs
• EPA tests are designed to reflect “typical” driving conditions
• Many factors affect “real world” performance
 » How and where you drive
 » Vehicle condition and maintenance
 » Fuel variations
 » Vehicle variations
 » Engine break-in

NEMA WD 7 Illustration

• Helps customers choose the best performing sensor for their needs
• NEMA WD 7 illustrations are designed to reflect “typical” indoor conditions
• Many factors affect “real world” performance
 » Room size, shape and the presence of obstacles
 » Heavy draperies or heavy carpeting
 » Open or raised ceilings
 » Excessive airflow
 » Temperature

Specify sensors tested to the NEMA WD 7 Standard to ensure optimum performance for your application.
Energy Codes
Energy costs and consumption continue to rise in the United States. Today, many energy codes and energy policies either require or incentivize the use of energy efficient lighting controls on commercial projects.

In buildings over 5,000 square feet, all general lighting must be able to be automatically turned off.

- Occupancy sensors can be used throughout the building, in lieu of programmable timing, to meet the Automatic-Off requirement outlined in the ASHRAE standard.
- In every building, regardless of size, ASHRAE requires that occupancy sensors be placed in classrooms, conference/meeting rooms, employee cafeterias and break rooms.

LEED Green Building Rating System
Both of the above ASHRAE requirements must be met by any project hoping to earn LEED certification. Lighting controls can contribute toward meeting a prerequisite and earning up to 24 percent or 24 of the 100 points available in LEED 2009. Use occupancy sensors to earn LEED points by significantly improving the energy performance of the building.

<table>
<thead>
<tr>
<th>Credit Number</th>
<th>Credit Name</th>
<th>Category</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite 2</td>
<td>Minimum Energy Performance</td>
<td>Energy & Atmosphere (EA)</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>Credit 1</td>
<td>Optimize Energy Performance</td>
<td>Energy & Atmosphere (EA)</td>
<td>1-19 Points</td>
</tr>
<tr>
<td>Credit 5</td>
<td>Measurement & Verification</td>
<td>Energy & Atmosphere (EA)</td>
<td>3 points</td>
</tr>
<tr>
<td>Credit 6.1</td>
<td>Controllability of Systems: Lighting</td>
<td>Indoor Environmental Quality (EQ)</td>
<td>1 point</td>
</tr>
<tr>
<td>Credit 8</td>
<td>Light Pollution Reduction</td>
<td>Sustainable Sites (SS)</td>
<td>1 point</td>
</tr>
</tbody>
</table>

IECC
ASHRAE and Title 24 requirements must be met.

- IECC 2003 & 2006, Occupants must be able to reduce lighting load in the space in a reasonably uniform pattern by at least 50%. Bi-Level occupancy sensors offering personal control can be used to comply with this mandatory requirement.

California Title 24
Automatic shut-off occupancy sensors must be installed in the following areas to turn off the lighting when a space is unoccupied:

- Offices 250 sq. ft. or smaller
- Multipurpose rooms of less than 1000 sq. ft.
- Classrooms of any size
- Conference rooms of any size

Space Control - Requires individual control devices in spaces enclosed with floor-to-ceiling height partitions and include individual rooms for partitioned open offices.

Light Level Reduction Control - Requires simple switching strategies to reduce light levels by up to 50%. Bi-level occupancy sensors can also meet the requirements by offering 2 levels of control.

Programmable Timing - California, Title 24 mandates that the lighting system in any building, residential and non-residential, regardless of size, must include programmable timing.

Commercial Building Tax Deduction
An incentive for building owners to adopt the most energy-efficient lighting control strategies with tax credit capped at 60¢ per square foot and was recently extended through December 31, 2013. To qualify for the tax deduction, bi-level switching is required in all occupancies except hotel and motel guest rooms, restrooms, and public lobbies.

- Bi-level occupancy sensors can also meet the bi-level switching requirements outlined in the Commercial Tax Deduction. These occupancy sensors turn all of the lights in a space on to 50% when an occupant enters a room. Occupants can then manually turn the lights on to 100%, if they require maximum illumination.
Ceiling Sensors Reference Guide

<table>
<thead>
<tr>
<th>Features</th>
<th>Greengate</th>
<th>WattStopper</th>
<th>Hubbell</th>
<th>Leviton</th>
<th>SensorSwitch</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive Infrared</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Coverage cut-off - great line-of-sight</td>
</tr>
<tr>
<td>Ultrasonic Technology</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No, Use Microphonics</td>
<td>Excellent minor motion (restrooms; cubicle areas; hallways)</td>
</tr>
<tr>
<td>Dual Technology</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Use Microphonics</td>
<td>No gap coverage - ensures greatest sensitivity and coverage</td>
</tr>
<tr>
<td>Single and Dual Relay Line Voltage Units</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Ease of installation</td>
</tr>
<tr>
<td>Universal Voltage 120 to 347 VAC 50/60Hz Line Voltage Units</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>120V to 277V Only</td>
<td>No</td>
<td>Ease of ordering; less cat #s to stock at distribution</td>
</tr>
<tr>
<td>Self-Adjusting</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Ease of installation</td>
</tr>
<tr>
<td>Daylight Sensor</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Provides increased energy savings</td>
</tr>
<tr>
<td>Smooth Domed PIR Lens</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Premium aesthetic</td>
</tr>
<tr>
<td>Zero Time Delay Mode</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Better integration with centralized lighting control systems</td>
</tr>
<tr>
<td>Industry's widest initial activation coverage as verified using the NEMA WD 7 Standard Guide</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Ensures better initial activation and reduced false OFFs</td>
</tr>
<tr>
<td>Industry's leading major and minor motion coverage as verified using the NEMA WD7 Standard Guide</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Excellent major and minor motion coverage reducing false OFFs</td>
</tr>
<tr>
<td>Walk-Through Mode</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Prevent lights from being ON for unnecessary periods of time</td>
</tr>
<tr>
<td>Bathroom Mode for Dual Relay Line Voltage Units</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Offers extra time delay for second relay</td>
</tr>
<tr>
<td>Relay Swap for Dual Relay Line Voltage Units</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Ease of installation</td>
</tr>
<tr>
<td>Title 24 Compliant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Ease of specification</td>
</tr>
<tr>
<td>Matching aesthetic across multiple sensor platforms</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Premium aesthetic - ease of specification</td>
</tr>
<tr>
<td>ROHS Compliant</td>
<td>Yes</td>
<td>Yes</td>
<td>Unable to validate</td>
<td>Unable to validate</td>
<td>Unable to validate</td>
<td>No lead, mercury, or other harmful chemicals as identified by RoHS</td>
</tr>
</tbody>
</table>

Note: Features and Specifications are subject to change.

All information represented is to the best of Cooper’s knowledge based on public information available in April 2012.
<table>
<thead>
<tr>
<th>Greengate Catalog Number</th>
<th>Description</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling Mount Sensors - MicroSet Self-Adjusting (Low Voltage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAC-DT-2000-R</td>
<td>MicroSet Dual Tech, 2000 sq. ft. (2-way) with BAS relay and daylight sensor, 32 kHz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-DT-2000</td>
<td>MicroSet Dual Tech, 2000 sq. ft. (2-way), 32 kHz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-DT-1000-R</td>
<td>MicroSet Dual Tech, 1000 sq. ft. (2-way) with BAS relay and daylight sensor, 32 kHz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-DT-1000</td>
<td>MicroSet Dual Tech, 1000 sq. ft. (2-way), 32 kHz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-DT-0501-R</td>
<td>MicroSet Dual Tech, 500 sq. ft. (1-way) with BAS relay and daylight sensor, 40 kHz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-DT-0501</td>
<td>MicroSet Dual Tech, 500 sq. ft. (1-way), 40 kHz</td>
<td>W</td>
</tr>
<tr>
<td>Ultrasonic Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAC-U-2000-R</td>
<td>MicroSet Ultrasonic, 2000 sq. ft. (2-way) with BAS relay and daylight sensor, 32 kHz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-U-2000</td>
<td>MicroSet Ultrasonic, 2000 sq. ft. (2-way), 32 kHz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-U-1000-R</td>
<td>MicroSet Ultrasonic, 1000 sq. ft. (2-way) with BAS relay and daylight sensor, 32 kHz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-U-1000</td>
<td>MicroSet Ultrasonic, 1000 sq. ft. (2-way), 32 kHz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-U-0501-R</td>
<td>MicroSet Ultrasonic, 500 sq. ft. (1-way) with BAS relay and daylight sensor, 40 kHz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-U-0501</td>
<td>MicroSet Ultrasonic, 500 sq. ft. (1-way), 40 kHz</td>
<td>W</td>
</tr>
<tr>
<td>Passive Infrared Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAC-P-1500-R</td>
<td>MicroSet PIR, 1500 sq. ft. (360 degrees) with BAS relay and daylight sensor</td>
<td>W</td>
</tr>
<tr>
<td>OAC-P-1500</td>
<td>MicroSet PIR, 1500 sq. ft. (360 degrees)</td>
<td>W</td>
</tr>
<tr>
<td>OAC-P-0500-R</td>
<td>MicroSet PIR, 500 sq. ft. (360 degrees) with BAS relay and daylight sensor</td>
<td>W</td>
</tr>
<tr>
<td>OAC-P-0500</td>
<td>MicroSet PIR, 500 sq. ft. (360 degrees)</td>
<td>W</td>
</tr>
<tr>
<td>Ceiling Mount Sensors - MicroSet Self-Adjusting (Line Voltage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive Infrared Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OAC-P-1500-DMV</td>
<td>MicroSet PIR, 1500 sq. ft. (360 degrees) with daylight sensor, dual relay, 120-347 VAC 50/60Hz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-P-1500-MV</td>
<td>MicroSet PIR, 1500 sq. ft. (360 degrees) with daylight sensor, single load, 120-347 VAC 50/60Hz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-P-0500-DMV</td>
<td>MicroSet PIR, 500 sq. ft. (360 degrees) with daylight sensor, dual relay, 120-347 VAC 50/60Hz</td>
<td>W</td>
</tr>
<tr>
<td>OAC-P-0500-MV</td>
<td>MicroSet PIR, 500 sq. ft. (360 degrees) with daylight sensor, single load, 120-347 VAC 50/60Hz</td>
<td>W</td>
</tr>
</tbody>
</table>
How to Order:

Specifying and ordering the new Greengate Ceiling Sensors is fast and easy. Our descriptive catalog numbering structure allows you to quickly look at the catalog number and determine what to order.

OAC - DT - 2000 - R

- **O** - Occupancy
- **A** - Automatic/Self Adjust
- **C** - Ceiling

- **U** - Ultrasonic
- **P** - Passive Infrared

- **0500**
- **0501**
- **1000**
- **1500**

- **MV**
- **DMV**

- **R** - BAS Relay and Daylight Sensor

MV - 120 to 347 VAC; 50/60 Hz

DMV - Dual Level; 120 to 347 VAC; 50/60 Hz

- **DT** - Dual Technology
- **U** - Ultrasonic
- **P** - Passive Infrared

0500 - 0500 sq. ft.; 360 degrees

0501 - 0501 sq. ft.; 180 degrees

1000 - 1000 sq. ft.; 360 degrees

1500 - 1500 sq. ft.; 360 degrees

2000 - 2000 sq. ft.; 360 degrees

Additional Greengate Occupancy Sensors

Throughout a commercial application, there are numerous spaces requiring a different lighting control solution to maximize energy savings. Cooper Controls offers a comprehensive offering of occupancy sensor solutions for almost any application.

Wall Switch Occupancy and Vacancy Sensors

- OSW-P-1001-MV-W
- ONW-D-1001-DMV-W

Ceiling and Wall Mounted Occupancy Sensors

- OMR-P-1200R
- OAWC-DT-120W-R

Highbay and Specialty Use Area Sensors

- OEF-P-2MH0-MV-S
- OXC-P-2MH0-R

Switchpacks

- SP20-MV
- SPD20-MV-NO

Timer Switches

- TSW-MV-W
Cooper Controls offers complete occupancy sensor layout services.

To streamline your building design process, occupancy sensor layout services are available, allowing you to focus your valuable time elsewhere.

Simply email us your reflected ceiling plan and within 3-5 business days, we will return a completed layout and a guaranteed bill of material.

The program includes:
- Occupancy sensor layouts on CAD drawings along with a complete bill of materials.
- 3 to 5 business days turnaround time.
- Email notification(s) of receipt of layout request.
- Guaranteed sensor layout coverage performance.

Send an email including the DWG file (AutoCAD preferred), PDF or TIF file (10MB maximum file size) to: sensorlayouts@cooperindustries.com to take advantage of this service today.

Online Support

With the ever-increasing use of the Internet as a communication tool, Cooper Controls has created a comprehensive website that enables customers to access information effectively.

The website includes general product information, where to purchase, the latest news, and contact information. In addition, product specific information is available for download including:

- Spec sheets
- Installation instructions
- Technical specifications
- Coverage and wiring diagrams
- Sales brochures and guides

Visit us at: www.coopercontrol.com
Based on Environmental Defense Fund Paper Calculator

<table>
<thead>
<tr>
<th>Environmental Impact</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Trees Saved</td>
<td>12</td>
</tr>
<tr>
<td>Total Energy Saved—Million BTU’s</td>
<td>7.9</td>
</tr>
<tr>
<td>Greenhouse Gas Reduction—lbs of CO₂</td>
<td>4391</td>
</tr>
<tr>
<td>Gallons of Water Saved</td>
<td>4129</td>
</tr>
<tr>
<td>Solid Waste Reduction—lbs of Waste</td>
<td>683</td>
</tr>
<tr>
<td>Kilo-watt (kwh) Hours Saved</td>
<td>1702</td>
</tr>
</tbody>
</table>

Contact Information

- **North America Headquarters**
 - 203 Cooper Circle
 - Peachtree City, GA 30269
 - P: 800-553-3879
 - F: 800-954-7016
 - www.coopercontrol.com
 - ControlsSales@cooperindustries.com

- **International Headquarters**
 - Usk House, Lakeside, Llantarnam Park, Cwmbran, NP44 3HD, UK
 - P: +44 (0)1923 495495
 - F: +44 (0)1633 867880
 - www.coopercontrol.com
 - enquiries@coopercontrols.co.uk

- **Canada**
 - 5925 McLaughlin Road
 - Missisauga, Ontario L5R 1B8
 - P: 905-507-4000
 - F: 905-568-7049
 - www.coopercontrol.com

Scan the code with your smart phone for more information.